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Abstract. The theory describing the electron mass enhancement in Kondo-lattice heavy-
fermion systems is presented. The description is based on the picture of a spin Fermi liquid
of RVB type which strongly interacts with conduction electrons. It is shown that the electron–
spinon scattering results in large phase shifts for conduction electrons near the Fermi level
which mimic the resonance renormalization but does not involve f-electron states. The results
are compared with dHvA data for several Ce-based compounds.

1. Introduction

It is generally accepted that the eventual source of unusually high density of states of
fermionic excitations which is observed experimentally in numerous uranium- and cerium-
based heavy-fermion (HF) materials is the involvement of internal degrees of freedom of
unfilled f shells of these elements in the low-energy excitation spectra. However, the
mechanism of strong effective mass enhancement in these materials is still a matter of
discussion. Recently it became clear (see, e.g., [1]) that one should discriminate between
the intermetallic compounds with non-integer valence where the f-electrons are directly
involved in metallic cohesion and charge transport via hybridization with the less tightly
bound valence electrons, and those systems which demonstrate nearly integer valence. In
the latter case the charge fluctuations in the f channel are suppressed, and only spin degrees
of freedom are easily excited at low energy and temperature. Most of the U-based HF
systems, such as UBe13, UPt3, and URu2Si2, and some Ce-based materials (CeSn3, CeNi5,
CeNi), apparently, belong to the first group. But there are many examples of practically
integer-valent compounds such as CeAl2, CeAl3, CeIn3, CeCu6, and maybe CeRu2Si2 which
demonstrate all characteristic features of HF systems in a ‘Kondo lattice’ regime when the
charge excitations involving the electrons from the f shell seem to be forbidden due to
strong intraatomic Hubbard repulsion.

It was argued in [2] that the most of the experimental methods available do not allow
one to determine the degree of involvement of f-electrons in the thermodynamic and even in
the transport properties of HF materials. In this situation the experimental methods which
deal exclusively with charge excitations seem to play a part ofexperimentum crucisin the
problem of the origin of heavy-fermion behaviour. Among these methods the studies of de
Haas–van Alphen oscillations gave until recently the most useful information. In particular,
the dHvA studies of extremal cross sections of the Fermi surface and the corresponding
effective masses of the carriers in UPt3 [3] resulted both in fairly good agreement with the
data of band calculations of the Fermi surface topology and in registering genuinely large
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effective masses which could be ascribed to the f electrons at the Fermi level. On the other
hand, there are numerous examples of dHvA measurements in HF materials, such as UBe13

[4] and CeCu2Si2 [5], where the large masses were not observed at all. The most interesting
is the situation with two non-magnetic, non-superconducting materials CeCu6 and CeRu2Si2
which belong to the group of nearly-integer-valent HF systems. In both these materials large
effective masses were found. The value ofm∗ ≈ 80m0 was observed in CeCu6 [6] and the
extremely large mass ofm∗ ≈ 140m0 was seen in CeRu2Si2 [7, 8]. The latter system is an
unique object for studying the electron mass enhancement effect because it allows dHvA
measurements in a wide range of magnetic field values and directions, and the information
obtained could be compared with theoretical calculations of electron spectra. It was found
(see [9] for a review) that the general shape of the Fermi surface is formed by the usual
metallic bands, but the huge effective mass found experimentally for two electron sheets of
the Fermi surface cannot be described without appealing to strong correlation effects.

The conventional methods of theoretical description of strong correlation effects in band
structure calculations originate from the idea of Abrikosov–Suhl resonance as a final source
of strong renormalization of the electron effective mass at the Fermi surface [10, 11, 12].
According to this approach, the Kondo scattering results in formation of the resonance at
nearly zero energy ineachsite of the Kondo lattice which means that the phase shiftδl=3(ε)

for the scattering of conduction electron on each f atom is close toπ/2 at ε → εF . In
spite of the definitely spin origin of the Abrikosov–Suhl resonance in the original single-site
Kondo problem, the mean-field approximation used in the procedures of transforming this
resonance into the extremely narrow band just above the Fermi surface (see [13] for detailed
description of the theory) includes an important step of charge transfer from conduction
electrons to spin degrees of freedom representing f ions [14, 2].

In the present paper another possibility of obtaining strong mass enhancement and
the change of the topology of Fermi surface is described. The mechanism of spin–
charge scattering described below is based on the same Kondo lattice Hamiltonian, but
the approach proposed does not appeal to the Kondo resonance and does not demand a
phenomenological extra narrow f level above the Fermi level. This scattering is potential in
its origin and character but, nevertheless, it results in renormalization of both Fermi surface
and effective masses of charged carriers. The conclusions of the theory are compared with
the experimental data for different HF materials.

2. General theory of electron–spinon scattering

We consider the Kondo lattice Hamiltonian

H = H0 + Hint =
∑
k,νσ

εν
ka+

kσνakσν + 2J
∑
i,ν

(
Si · sν

i + 1

4

∑
σ

a+
iσνaiσν

)
. (1)

HereH0 is the Hamiltonian describing the states in conduction bands,ν is the band index,
andHint is the Hamiltonian of contact exchange interaction between the conduction electrons
and the localized spinsS = 1/2 in the sitesi of the Kondo lattice. Thus the f-electron
subsystem is represented in this Hamiltonian only by the localized spinsSi which interact
with itinerant momentsν

i = 1
2

∑
kk′,νσσ ′ a

+
kσν τ̂ ak′σ ′ν of conduction electrons (τ̂ is the Pauli

matrix). Hint can be represented in conventional quartic form

Hint = J
∑
j,σσ ′

∑
kk′,ν

f +
jσ fjσ ′a+

kσ ′νak′σν ei(k−k′)Rj (2)

by returning to Fermi operatorsf +
jσ ′ , fjσ ′ which describe the localized f electrons. The sign

of exchange constant corresponds to the antiferromagnetic coupling.
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Since the charge fluctuations in a Kondo lattice are forbidden for f electrons by strong
intra-site Hubbard repulsion, the f operators in the Hamiltonian (2) can be treated as
Abrikosov pseudofermions which describe the spin excitations and carry no charge. Then,
the indirect intersite RKKY interaction which appears in the Kondo lattice as a result
of exchange by virtual electron–hole pairs can be responsible for both the spin ordering
transition and spin liquid formation. The Abrikosov–Suhl resonance near the Fermi level
was shown to be the source of stabilization of the spin-liquid resonating valence bond (RVB)
state [14]. In the mean-field approximation this Kondo-stabilization mechanism is described
by the following decoupling of the Hamiltonian (2),

Hint = J
∑
j,ν

∑
k,νσ

[1jf
+
jσ akσνe−ik·Rj + HC] (3)

where the anomalous correlator

1j = N−1
∑
kσ

〈fjσ a+
kσ 〉eik·Rj =

∑
σ

〈fjσ a+
jσ 〉 (4)

is introduced. Then, assuming1j = 10 to be a site-independent real quantity one comes
to the effective hybridization Hamiltonian where the f fermions which described initially
neutral spin states acquire charge (see, e.g., [14, 2]), and the characteristic ‘hybridization
intergral’ can be estimated as

V0 = J10 ≈ (εF TK)(1/2) (5)

whereTK is the Kondo temperature andεF is the Fermi energy.
However, it was shown in [15] that another scenario can be realised in a critical

regionTN(αc) ≈ TK(αc) of the Doniach’s phase diagram. This diagram [16] describes the
dependence of competing Néel and Kondo temperatures,TN ∼ α2 and TK ∼ exp(−α−1)

on the coupling constantα = 2JN (εF ) (hereN (εF ) is the density of states on the Fermi
surface). This scenario predicts that atα ∼ αc the spin liquid phase of RVB type can arise
at T ≈ T ∗ > TN > TK due to the fact that the Kondo scattering processes reduce noticeably
the Ńeel temperatureTN in this region (see, e.g., [1]) whereas the temperatureT ∗ of RVB
ordering is not violated by Kondo sceening.

This means that the f spins which behave as the localized momentsSj = 1
2f +

jσ τ̂fjσ ′ at
high temperature are transformed into uniform RVB excitations

bij =
∑

σ

f +
iσ fjσ (6)

at T ∼ T ∗ so that r = ln(T ∗/TK) & 1. At this temperature the one-site exchange is
noticeably enhanced atT ' T ∗ by Kondo scattering processes,

J̃ (ε, T ) ≈ J

1 − α ln εF / max(ε, T ∗)
∼ εF

r
. (7)

The transformation from the regime of nearly free paramagnetically disordered local
spins to a spin-liquid RVB state has a crossover character provided the gauge field
fluctuations are properly taken into account (see, e.g., [17]), but in any case the Kondo
scattering processes are quenched atT ∼ T ∗ in accordance with (7). This means that the
f spins are only partially screened by exchange interaction with conduction electrons and
the full-scale Kondo singlet states characterized by the parameter10 are not formed at low
temperatures. The interaction between the ‘slow’ electrons with the energies|ε − εF | < T ∗

and the spin excitations is still described by exchange interaction Hamiltonian (2)

H̃int = J̃
∑
j,ν

∑
σσ ′

f ∗
jσ fjσ ′a+

jσ ′νaj ′σν (8)
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but with two essential reservations: (i) the renormalized coupling constantJ̃ ≡ J̃ (0, T ∗) (7)
dressed by the fast excitations with|ε − εF | > T ∗ entersH̃int instead of the bare coupling
constantJ and (ii) the Fermi operatorsfjσ now describe the spinon excitations in a narrow
band with the width of' T ∗ [14]. These fermions obey the kinematic constraint∑

σ

f +
jσ fjσ = 1 (9)

and thus possess particle–hole symmetry.
Now we turn to calculation of the electron effective mass enhancement due to strong

electron–spinon scattering. This scattering gives both static and dynamical contributions to
renormalization of the low-energy electron spectrum for the self-energy part of the electron
Green function

Gkν(ω) = (ω − εkν − 6kν(ω))−1 (10)

which are given by the diagrams of figures 1 and 2, respectively (spin index is omitted
because we consider here only spin-diagonal processes). The first diagram describes the
static scattering which is given by the last term of the interaction Hamiltonian (1). This
scattering is negligible for fast electrons, but the slow carriers strongly interact with spinons,
and the static scattering amplitude which is characterized by the potentialJ̃ /2 should be
taken into account in the periodic lattice potentialVgg′ for conduction electrons (g is the
reciprocal lattice vector). The second diagram describes the spinon scattering contribution
to electron self-energy6kν(ω) in the Born approximation. The latter contribution is usually
considered in any discussion of heavy-electron mass renormalization due to interaction with
Bose fields of different origin existing in a narrow energy intervalω̄ � εF (see, e.g., [18–
23]). We will return to this term after discussing the one-site contribution given by the
diagram of figure 1.

Figure 1. One-site scattering amplitudeTj for conduction electron self-energy.

Figure 2. Second-order contribution to conduction electron self-energy. The dashed lines
represent the spinon Green functions and the wavy line stands for the polarization operator5ij .

One could expect that the static contribution will modify strongly the dispersion law
for conduction electrons in a narrow interval of energies∼ T ∗ since the magnitude of the
scattering potential which is determined by the coupling constantJ̃ ∼ εF / ln(T ∗/TK) (see
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(7)) is comparable with the energy of incident Bloch waves. Hence, the full scattering
amplitudeTgg′ which is denoted by the hatched circle in figure 1 should be taken into
account in the calculations of spinon contribution to the periodic scattering potential. Only
the spin-diagonal part of the electron–spinon interaction enters this potential (provided we
are far enough from any magnetic instability), so the constraint (9) allows one to ascribe
the value ofJ̃ /2 to the bare vertices marked by the crosses in figure 1. The dotted lines
which connect the crosses mean that all vertices are related to the same lattice site.

The scattering amplitude for one-site scattering potential is easily calculated (see [24]).
In a coordinate representation it has the form

Tj = J̃j

1 − M(ε)
(11)

where

M(ε) = J̃

2

∫
dE

Nν(E)

ε − E + iδ
= J

2
[R(ε) − iπNν(ε)]. (12)

Only those ‘slow’ electrons withE < T ∗ which are subject to strong Kondo-enhanced
scattering give a contribution to this integral.Nν(E) is the density of states of these
electrons;R(ε) is the real part of the integralM(ε). The scattering amplitude

Tgg′(k) = (k + g|Tj |k + g′) (13)

should be substituted in a secular equation for the band structure calculation together with
the ordinary scattering potential

Vgg′ =
∫

Vj(r) exp i(g − g′)(r − Rj ). (14)

At this stage it is convenient to turn to a spherical muffin-tin (MT) approximation
for the lattice potential because this approximation was used in all preceding semi-
phenomenological band structure calculations for the Kondo lattices which stem from the
work [12]. Then the scattering amplitude is expressed via partial wave phase shiftsδl(ε)

on the boundary of the MT sphere. The Green function calculations result in this case in a
well known secular equation (the so called KKRZ equation, see [25])∣∣∣∣( |k − g|2

2m0
− ε

)
δgg′ − 0gg′

∣∣∣∣ = 0 (15)

where the matrix element of the potential scattering has the form

0gg′ = 4π

2m0κ�0

∑
l

(2l + 1) tanηl

jl(|k − g|R)jl(|k − g′|R)

jl(κR)jl(κ ′R)
Pl(cosθgg′). (16)

Here �0 is the unit volume,R is the radius of the MT sphere,κ = √
2m0ε, Pl(x) is

the Legendre polynomial,jl(x) andnl(x) are the spherical Bessel and Neumann functions,
respectively. The phase shiftδl enters equation(16) via

cotηl(κ) = cotδl(κ) − nl(κR)/jl(κR). (17)

The phase shift due to spinon potential scattering can be found from the scattering
amplitudeTj(ε) given by (11),

tanδl(ε) = πJ̃N (ε)

2 − J̃R(ε)
. (18)

At this point our calculation of spinon contribution to the electron band states could be
compared with those of the resonance scattering theory.
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The theory of the renormalized band structure of Kondo lattices (see [9] and references
therein) adopts for the phase shift in the f channel (l = 3) the resonance form

δ3(ε) = tan−1 TK

ε0 − ε
. (19)

This phenomenological assumption is substantiated by the idea that the one-site scattering
amplitude in this channel is enhanced by extra spin-fluctuation scattering of Kondo origin
which is known to result in a resonance behaviour of a phase shift in a single-impurity case,

δl(ε) = δl(εF ) + T −1
K (ε − εF ) (20)

whereδl(εF ) = π/N , and N is the number of scattering channels. It is believed in this
approach that the Kondo lattice could be approximated by the lattice of uncorrelated Kondo
singlet states, and, as a result, the effective ‘resonance level’ε0 appears which position is
to be found from the Friedel sum rule (or electrical neutrality condition). As a result, the
electron excited from the Fermi sea sees a narrow resonance just above the Fermi surface,
ε0 − εF = bTK , b ∼ 1 in accordance with (19).

Then, substituting (19) into secular equation (15) one comes to a familiar picture of
a narrow band hybridized with nearly free conduction bands. If one neglects the angular
dependence of resonance scattering, the equation (15) can be rewritten for a single-channel
scattering case as∣∣∣∣( |k − g|2

2m0
− ε

)
δgg′ − V 2

0 BgBg′

ε′
0 − ε

∣∣∣∣ = 0 (21)

where

ε′
0 − εF = TK

[
b − n3(κR)

j3(κR)

]
(22)

the parameterV0 is defined in (5), and

Bg =
(

2π

m0κ�0εF

)1/2
j3(|k − g|R)

j3(κR)
. (23)

Since the spin f states have picked a charge up in the process of transformation of
exchange Hamiltonian (2) to effective hybridization Hamiltonian (3) the Friedel sum rule

1n = N

π
δ(εF ) ∼ 1 (24)

demands a noticeable drop of the chemical potential1µ ∼ TK . As a result, not only are the
effective mass and the Fermi wave vector strongly renormalized due to resonance Kondo
scattering (figure 3(a)), but also the electronic compressibility should suddenly increase
when T passesTK because the extra heavy electron appears under the Fermi surface at
T < TK . This result is an undesirable consequence of the resonance approach which could
hardly be avoided in phenomenological calculations of this type [26], although a more
refined many-body treatment overcomes this difficulty [19, 9].

Let us compare these results with the changes which arise in the low-energy electron
excitation spectrum due to strong electron–spinon scattering. The phase shift given by (18)
should be inserted in KKRZ secular equation (15) instead of (19). However, in this case
only those electrons which give the dominant contribution to the local exchange interaction
are subject to strong exchange scattering. These are the d electrons donated by Ce ions and
neighbouring Ru ions into the conduction band. Hence, one should examine those sheets
of the Fermi surface which have a noticeable contribution of the dCe,Ru partial wave with



Quasiparticles in heavy-fermion systems 3607

Figure 3. Renormalization of the conduction electron dispersion law near the Fermi surface: (a)
due to Kondo-resonance interaction; (b) due to Migdal-type non-adiabatic interaction; (c) due
to Migdal-type interaction plus static exchange scattering.

l = 2. We simplify the problem for illustrative purposes and consider here the case of a
single Bloch wave subject to strong spinon renormalization.

It should be emphasized that the two contributions to electron dispersion renormalization
given by the diagrams of figures 1 and 2 should be considered together because both
mechanisms influence the electrons in the same thin layer with the width ofT ∗ around the
Fermi surface. This is why the full lines which correspond to the electron Green functions
given by (10) with the self-energy part depicted in figure 2 should be substituted into the
diagram of figure 1. As mentioned above, the calculation of the former diagram is a well
known procedure. In the context of HF theory the effective mass renormalization of this
type was calculated, e.g., in [19–22]. So we recall here in brief the calculation scheme.

Using the Matsubara Green function technique the self-energy part of figure 2 can be
written as

6(p, εn) = J̃ 2T
∑
m

∫
dp′

(2π)3

5(p − p′, ωm)

iεn−m − ξp′ − 6(p, εn−m)
(25)

where εn = (2n + 1)πT and ωm = 2mπT are Matsubara frequencies,p = h̄k,
ξp = vF (p − pF ) is the electron quasiparticle energy,5(q, ωm) is the polarization operator
which is given by the spinon particle–hole pair propagator. This polarization loop can be
represented as

5(q, ωm) =
∫ ∞

0
dEP(q, E)

2E

ω2
m + E2

(26)

whereP(q, E) is a spectral density which characterizes the spin-fermion liquid. Since we
are interested only in smallξ , the dp′ integration can be carried separately over the energy
ξp′ and the momentum directionp′/p′ on the Fermi surface. Then, in a first approximation
in (r)−2 = (J̃ /εF )2 one comes to the universal expression for the self-energy [21, 22],

6(p, εn) = −iπN0(εF )J̃ 2T

n∑
m=−n

〈5(p − p′, ωm)〉 (27)

where〈. . .〉 stands for the average over the angle betweenp andp′ on the Fermi surface,
and N0 is the density of states of bare electrons. Then, turning to the limitT → 0 and
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making the analytical continuation, one finds from (27) the simple equation for the real part
6R of the self-energy,

6R(p, ε) = −N0(εF )J̃ ε〈50〉. (28)

The Green function (10) with the self-energy given by the diagram of figure 2 behaves
near the Fermi surface as

G(p, ε) = Z

ε − ZvF (p − pF )
(29)

where the factorZ−1 = (1 + λ) characterizes the mass enhancement

m∗ = m0(1 + λε) λε = −d6R(ε)

dε
. (30)

Using (28) one comes finally to the well known equation [20, 21]

λ0 = 2N0J̃
2
∫ 〈P(q, E)〉

E
dE. (31)

One can estimate the factorλ on the Fermi surface as

λ ∼ N0J̃
2

T ∗ = εF

rT ∗ � 1 (32)

since the average spectral density of spin-fermion states is characterized by the bandwidth
∼ T ∗. Thus we conclude that the electron mass in certain conduction bands can be
enhanced essentially by spinon scattering. This dynamical renormalization influences only
the effective mass on the Fermi surface leaving intact the Fermi wave vector (see figure 3(b)).
The fact that the dynamical mass enhancement does not violate the chemical potential
provided∂6R/∂ε � v−1

F ∂6R/∂p is well known in the Fermi liquid theory. However, the
static scattering given by the diagrams of figure 1 open the possibility of Fermi surface
reconstruction.

To show this we insert the enhanced density of states

N (ε) ≈ λN0(ε) (33)

in (18) for the scattering phase shift. One cannot expect large phase shift due to spinon
scattering of bare electrons since the total number of unrenormalized states in the non-
adiabatic layer of slow electrons is extremely small,nslow ∼ T ∗/εF . However, due to the
‘giant Migdal effect’ [20] discussed above, a large enough number of electron states is
sucked into this layer,

ñslow ∼ 1

ln2(T ∗/TK)
(34)

and the one-site static scattering can result in a noticeable phase shift.ñslow < 1 since
T ∗ > eTK [15]. The excess density of states due to static spinon scattering is given by

1N (ε) = 1

π

dδ(ε)

dε
= J̃ 2N (ε)

[2 − J̃R(ε)]2 + [πJ̃ 2N (ε)]2

dR(ε)

dε
(35)

(spin degeneracy is not taken into account in this equation). HereR(ε) is the monotonically
growing function provided there are no van Hove singularities close to the Fermi surface†,
so 1N (ε) > 0 in the slow-electron layer, and the character of the dispersion law
renormalization is asymmetric relative to the Fermi level unlike the case of the Migdal

† See, e.g., [27] where the properties of the Hilbert transform of the electron density of states are discussed in
detail.
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mechanism discussed above. Since the total number of electrons involved in this process
ñslow < 1, the real resonance of Clogston type [24], i.e., the zero of the function [2−J̃R(ε)],
cannot appear at the Fermi level, but, nonetheless, the electron dispersion curve in this layer
flattens noticeablyas if the resonance existed somewhere above the Fermi level. All these
effects disappear for the electrons with the energyξp > T ∗ above the Fermi level, so the
unrenormalized dispersion law is restored outside the non-adiabaticity layer. The general
shape of the dispersion curve modified both by Migdal renormalization and static scattering
is shown in figure 3(c).

Since the quasi-resonance level is pinned to the Fermi level, as in the case of Abrikosov–
Suhl resonance discussed above, the change of the density of states described by (35) results
in the shift ofpF . The magnitude of this shift can be evaluated as

1pF

pF0
= 1

r

ṽF − vF

vF

(36)

wherevF is the Fermi velocity enhanced by Migdal renormalization andṽF is the eventual
velocity which is the result of the combined effect of the two mechanisms. When deriving
(36), we used the linear dispersion lawε = ξp for both renormalized bands and defined
pF aspF = rT ∗/vF . Then, taking for example the value ofr = 2, one finds that a 30%
increase of the radius of the Fermi sphere can be achieved by a rather modest enhancement
factor ṽF /vF = 1.6.

Thus we come to a conclusion that the spinon renormalization of the electron density of
states results not only in mass enhancement which turns out to be ‘giant’ in comparison with,
e.g., non-adiabatic enhancement due to electron–phonon interaction (conventional Migdal
effect), but also in swelling of the electron sheets of the Fermi surface (or in shrinkage
of the hole pockets). Migdal-type renormalization gives the dominant contribution to the
mass enhancement, but the static scattering can result in additional moderate increase of the
effective mass.

One more effect of the static scattering given by (13), (15), and (18) can be essential
for a pair of Bloch waves which become nearly degenerate close to the Fermi surface. This
equation can be rewritten in a two-wave case as

(ε − εk+g)(ε − εk+g′) − 02
gg′ = 0 (37)

(extended zone notation is used). Since the scattering amplitude (13) enters the secular
equation (15) instead of simple lattice potential (14), the strongl = 2 contribution given
by (18) can result in anomalously large band splitting and, hence in noticeable mass
renormalization andpF shift (figure 4). In the multiband picture which is usual for HF
systems such a situation seems to be not too uncommon.

To end the issue we return to the question of additional charge which appears under
the Fermi surface in renormalized band calculations [9] discussed above. As in the case of
resonance scattering, the shift ofpF corresponds to the increase of the occupied number of
states under the Fermi surface. According to (35), the additional charge can be estimated
as

1nc = 1

π
[δ(εF ) − δ(εF − T ∗)] ≈ ñslow. (38)

In the resonance theory the following sum rule is believed to be fulfilled [10, 28]:

�F

(2π)3
= nc + nf . (39)

Here �F is the volume under the Fermi surface of interacting electrons which should
correspond to the number of both conduction electron statesnc plus the number of states
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Figure 4. Two-wave mixing near the Fermi surface.

of the screened local momentsnf provided the screening is complete. The screening is,
indeed, complete in the one-site Kondo model in accordance with (20) and (24): if one deals
with a simple Kramers doublet,δ↑(εF )+δ↓(εF ) = π . In the resonance approach the Kondo
screening is assumed to take place in each unit cell of the Kondo lattice independently,
so the Friedel–Nozières sum rule is transferred to the Kondo lattice model, and the Fermi
surface swells as if an additional state arose under the Fermi level although this additional
state is of purely spin origin. This effect is interpreted as a sort of dynamical recharging
of resonating valence bonds due to Kondo coupling [14]. In the lattice case the resonance
level ε0 appears just above the Fermi level,

ε0 − εF ∼ V 2
0 /D ≈ TK (40)

and, as a result,1nc + 1nf is close to unity.
In our approach the Kondo scattering is quenched at high enough temperatureT ∗ > TK ,

thus the Kondo screening is incomplete, and the real Abrikosov–Suhl resonances are
not formed. Instead, the ‘underscreened’ spin degrees of freedom are transformed into
spin-fermion states which serve as a source of strong potential scattering for low-energy
conduction electrons. Therefore, there is no charge promotion to the spin subsystem, and
instead of the generalized sum rule (39) we return to the standard Luttinger theorem for
conduction electrons,nc = 2�F /(2π)3. However, the potential scattering given by the
diagrams of figures 1 and 2 can result in nearly the same effect as the resonance scattering
provided the condition

2 − J̃Rν(εF ) � 1 (41)

is fulfilled for a given bandν. The inequality (41) is not universal, and the part of
spin scattering in formation of the Fermi surface depends both on the value of parameter
r = ln(T ∗/TK) and on the magnitude ofR(εF ). The latter can be large enough only for
the bands containing a strong contribution of the dCe,Ru partial wave. The volume�(ν)

F

of the corresponding sheet of the Fermi surface is expected to increase due to exchange
interaction in accordance with figure 3 but only at the expense of the volumes of other sheets.
Moreover, this electron overflow cannot change the compensation degree of the metal since
no additional charge appears under the Fermi level when the exchange interaction is switched
on. Thus, one can expect noticeable reconstruction of the Fermi surface only in the case
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when the conduction electrons are distributed over several sheets of comparable capacity,
and some of these sheets can serve as the source of electrons for others subject to strong
remormalization. In the opposite case the giant Migdal effect will not be supported by
noticeable reconstruction of the Fermi surface, and the dHvA measurements will detect
enhanced electron masses given by (30) at the unreconstructed Fermi surface given by
conduction electrons only.

The essential feature of the theory is the conclusion that the density of charged
statesNc(εF ) should be less then the total density of fermion statesNth(εF ) seen as the
Sommerfeld coefficient in the low-temperature specific heatγth. Using equations (30) and
(32) one finds

γth = γspinon + γel = T ∗(1 + r−1). (42)

Then the relationγel/γth can be estimated as

γel

γth

= 1

1 + r
. (43)

Thus, in the case when only one electron band is strongly renormalized due to interaction
with spin-fermion excitations, the contribution of heavy electrons toγth should not exceed
50%. This estimation does not take into account the contribution of lighter electrons, and
the share of charged carriers grows noticeably provided several bands are subject to strong
electron–spinon renormalization. If there aren renormalized electron masses of comparable
magnitude, then the estimation (43) should be changed for

γel

γth

= n

n + r
. (44)

The ratioγel/γth should also be influenced by an external magnetic field which perturbs
both the electron and spinon spectrum.

It should be emphasized that unlike the approximation (4), (5) of the resonance theory
the processes described by the diagrams of figures 1 and 2 do not violate the SU(2)
gauge invariance of the Hamiltonian (1), and the results obtained do not depend on the
approximations used in description of the RVB state. The only indispensable condition is
the stabilization of RVB state against magnetic ordering of localized moments.

3. Renormalized electron bands and dHvA data for Ce-based heavy-fermion
compounds

As was mentioned in the introduction, the de Hass–van Alphen effect is exclusively a useful
tool for studying the electronic contributions to heavy-fermion thermodynamics, and there
are several HF systems for which (i) the detailed experimental information on the structure
of the Fermi surface is available, (ii) the experimental dHvA data on the shape of the
Fermi surface are in reasonable correlation with the numerically calculated energy bands,
and (iii) these data can be compared with those for the reference La-based systems. In this
section these Ce-based compounds are considered from the viewpoint of applicability of the
two-component HF liquid theory.

3.1. CeRu2Si2

The results of experimental dHvA studies of CeRu2Si2 [7, 8, 29, 30, 31] demonstrate
coexistence of light and heavy carriers on the Fermi surface with effective masses varying
from 1.0m0 to 140m0. According to these data, the multi-sheet Fermi surface consists of two
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(or, maybe, three) concentric small light-hole pockets around the Z point of the Brillouin
zone (bands 1–3), one large hole sheet with extremely heavy anisotropic massm∗ > 100m0

centred at the same Z point (band 4), and one electron sheet of complicated structure formed
mainly by the states near the0 and X points of the Brillouin zone (band 5). Moderately
heavy electron mass≈ 20m0 was detected at this surface. The heavy masses are shown
to be magnetic field dependent [30, 31], and these masses, apparently, disappear in a field
B > Bc whereBc ≈ 7.8 T is a critical field applied parallel to the [100] direction where a
steep metamagnetic crossover takes place.

Although the information about the dispersion laws and effective masses at the Fermi
surface is not complete†, it is tempting to collect the contributions of various sheets to the
total density of electronic states and compare the result with the data of thermodynamic
measurements (Sommerfeld coefficientγth). Such an estimation was made in [31]. The
assumed procedure used the results of the band calculations for the contribution of a given
Fermi surface sheetNi (εF ) as raw data and the enhancement coefficientsm∗

i,exp/m∗
i,band

were taken from the dHvA experiment. It was found that the therodynamically measured
Sommerfeld coefficientγth = 350 mJ mol−1 K−2 [32] correlates with the value collected
from the dHvA data available,γel = 260 mJ mol−1 K−2. Thus, according to these estimates

γel ≈ 0.75γth. (45)

It should be noted that the dominant contribution to this density of states comes from the
large hole band 4 (γ4,el = 194± 12 mJ mol−1 K−2), and the rest of the electron density of
states is given by the electron band 5 which is highly anisotropic. Whereas there are at least
three different cross sections of the band 4 which give large masses from 105m0 to 140m0

[31], the situation is much less clear with the band 5. There are three extremal orbitals with
moderately enhanced masses from 20m0 to 12m0 which can be ascribed unambiguously to
some cross sections of this surface, but up to now there is no confidence about uniform
enhancement of the electron mass along the Fermi surface of this band (see [26, 31, 33] for
discussion of the experimental situation). So the relation given by (45) should be considered
as the estimation from above. Nevertheless, this result evidences that the charged degrees
of freedom give the dominant contribution to the low-energy density of fermionic states
in CeRu2Si2, so one should find out whether this result is compatible with the picture
of renormalized electrons coexisting with neutral spin-fermions which was described in
section 2.

It is useful to compare for this purpose the Fermi surfaces of CeRu2Si2 and its non-
heavy-fermion analogue LaRu2Si2. The most striking difference between them is the change
of the volume of the hole sheet 4. In the latter system this sheet centred in the Z point
of the Brillouin zone is very large and contains 0.95 holes/cell [34]. This number should
be compared with the value of 0.17 holes/cell in CeRu2Si2 [35]. Not only the shrinkage
of this sheet but also the giant mass enhancement is observed in CeRu2Si2 (see above).
These effects could be explained in principle by the mechanism described in the previous
section (figure 3). According to the theory of electron–spinon scattering the band 4 (or 14
in the nomenclature of [33]) should be strongly renormalized because it is formed mainly by
the d electrons of Ce and Ru sublattices for which the df exchange interaction responsible
for the formation of spinon band is particularly strong, so one can expect both the giant
Migdal effect which results in the mass enhancement given by (30), and the phase shift
change (18) which is responsible for the Fermi sphere capacity change (24). However, the
change of the Fermi surface volume is possible only at the expense ofother sheetsof the
Fermi surface, so this effect can be realized provided there are at least two sheets of the

† The low value ofBc does not allow us to detect the cross sections of the heavy-mass sheets in a basal plane.
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Fermi surface with comparable capacities. Unfortunately, this is, apparently, not the case
in CeRu2Si2. Although the experimental information about the form and the volume of the
second important part of the Fermi sphere, i.e. the electronic band 5, is still not complete,
one can refer to the data for LaRu2Si2 in which this band contains only 0.06 electrons/cell,
so there is no source of the carriers to fill the hole states in band 4 to the necessary degree.

Very important is the experimental information about the carrier compensation degree
in CeRu2Si2. It should be reminded that LaRu2Si2 is an uncompensated material according
to the magnetoresistance data [36]. If the heavy fermions in CeRu2Si2 are of purely spin
origin then the f electrons remain localized, and this material should be still uncompensated.
According to the magnetoresistance data for CeRu2Si2 presented in [36] theρ⊥(H)

behaviour reminds us of that for a compensated material, and this result was interpreted
as an indication of the itinerant character of f electrons in this system. However, the
recent magnetoresistance measurements demonstrate the change fromH 2 to H dependence
of ρ⊥(H) with growing field [37], so the question of the interpretation of transverse
magnetoresistance seems to remain open. Nevertheless, the absence of large electron pockets
in the Fermi surface of LaRu2Si2 indirectly points out that the spinon–fermion interaction
cannot be the only source of conduction-band reconstruction in CeRu2Si2. Apparently, the
f-electron charge fluctuations are not completely suppressed in this system, and dynamical
sceening of local moments by these fluctuations can result in a dramatic change of the Fermi
volume.

The situation with dHvA oscillations in the high-field phase aboveBc [8, 30, 31] is
challenging. Although the general shape and the volume of the large hole sheetω which
appears in this phase instead of the heavy-hole sheet (ξ, µ, ν) are compatible with predictions
of the LDA band model in which the f electrons are treated in core states, the other branches
which are expected to be observed for the f-core band structure are not seen in the high-field
dHvA experiment. Moreover, the discrepancy betweenγel and γth becomes striking: the
relationγel/γth is estimated as∼ 0.2 at 15 T. This means that either the general shape of
the Fermi surface is changed drastically due to spin polarization, and some important heavy
sheets are simply not seen yet, or the spin contribution toγth is dominant in the high-field
phase. It should be noted, however, that the behaviour of a spin liquid in a high magnetic
field demands careful theoretical investigation.

3.2. CeCu6

CeCu6 is the second HF compound where dHvA measurements are possible in the non-
magnetic state. Unlike the case of CeRu2Si2, where the low-field and high-field phases are
separated by sharp metamagnetic transition, in this material only a smooth crossover in the
range 2.5 T< B < 4.5 T takes place [38, 39]. In higher fields the intersite correlations seem
to be suppressed as in CeRu2Si2 aboveBc [39].

The detailed measurements of dHvA oscillations were made in the fields 4 T< B <

14.5 T, i.e., in the ‘high-field’ state of this material [6, 40]. Unlike the case of CeRu2Si2,
nearly all orbits seen in dHvA measurements have strongly enhanced electron masses
in comparison with the non-correlated analogue LaCu6. There are at least eight dHvA
frequencies with the masses varying from 6m0 to 80m0. However, it turned out to be
impossible either to put these frequencies in correspondence with dHvA branches in LaCu6

or to attribute them to extremal orbits of LDA band calculations (both f band and f core).
One can refer to the extreme complexity of the Fermi surface in this low-symmetry

material, and to various shortcomings which limit the applicability of the density functional
calculation scheme to CeCu6, but the strong renormalization of practically all conduction
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bands in comparison with LaCu6 seems to be a firmly established experimental fact. Such
reconstruction does not contradict the predictions of two-component Fermi liquid theory.

The heavy masses demonstrate strong field dependence which reproduces nicely the
field dependence ofγth as in the high-field state of CeB6 (see below). However, the attempt
to estimate the density of states from dHvA experiments gave the value ofγel ≈ 0.3γth

in the range 10–13 T. One can conclude from this result that some heavier quasiparticles
are not seen in the experiment, but the possibility of ascribing this discrepancy to the spin
contribution toγth is also open.

To summarize, one can say that the data available do not rule out any mechanism of
mass enhancement in CeCu6, but these data also cannot be interpreted in favour of any
theoretical approach.

3.3. CeB6

Strictly speaking, cerium hexaboride is not the best object for application of the simple
version of spin-liquid theory presented in this paper, first, because the ground state of the
f shell is a quartet08 in this compound and the spin one-half description of the spinon band
cannot be applied directly, and, second, because CeB6 is antiferromagnetic in zero field
and at low temperatureT < TN = 2.3 K. The dHvA data available were obtained for the
high-field phase which shows quadrupolar ordering with a field induced antiferomagnetic
component, so both the interpretation of these data in terms of the band-structure calculations
using paramagnetic LaB6 as a reference system and the applications of the paramagnetic
spin-liquid model should be considered with caution. Nevertheless, there are many dHvA
measurements for this compound which can be compared with the corresponding data for
LaB6. Important also is the fact that experimental data available give no indication of
itinerant f-electron behaviour in this system.

In gross features the Fermi surface of CeB6 as measured by the dHvA method correlates
rather well with that of LaB6 [6, 41, 42]. This result is more or less confirmed by the positron
annihilation measurements in paramagnetic phase [43] although these data are obtained at
T = 30 K which is too high to be able to judge about the heavy-fermion contribution
to the Fermi surface. This surface consists of three nearly spherical ellipsoidal electron
sheets formed by p-type boron bands and centred at the X points of the Brillouin zone and
12 small electron pockets on the diagonals of the Brillouin zone. The moderately heavy
electron massesm∗ ≈ 10–21m0 correspond to the cross sections of large electron ellipsoids.
Thus, the main difference between the cases of CeRu2Si2 and CeB6 is the conservation
of both the volume and the shape of the p-electron Fermi surface in the latter case. This
means that the mass enhancement is due rather to Migdal-type renormalization (30) than
to Kondo-resonance hybridization (21). According to the above theoretical predictions,
one cannot expect spinon scattering reconstruction of the heavy sheet of the Fermi surface
because there is no second large electron sheet in this system which could be the source of
the carriers necessary for such reconstruction.

Then, if mass enhancement in CeB6 is due to interaction with virtual spin–fermion pairs
described by the polarization operator (26) (not charged fermion pairs and not Bose-type spin
fluctuations), one should expect the discrepancy betweenγel andγth. Indeed, the comparison
of the quasiparticle density of states, as given by three large and 12 small electron ellipsoids,
with the thermodynamic density of states results in a discrepancy betweenγel andγth which
reaches 100% in the external field of 10 T and diminishes with growing field according to
the estimations presented in [44]. To improve the situation these authors have taken into
account the contribution of the neck regions which could not be measured by dHvA but
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were estimated theoretically by using the known data for the sizes of large ellipsoids. This
procedure gave the desired correlation although nearly the half of the value ofγel is still
beyond the experimental control. Very recently new extremal orbitals were found for CeB6

in the anti-quadrupolar phase [45], so the fitting procedure should be visited once more.
Thus the situation in CeB6 is still unclear although the well established experimental data

for the high-field are compatible with giant Migdal renormalization of electron mass. One
can say, however, that the main difference between CeRu2Si2 and CeB6 is the conservation
of all features of the p-electron Fermi surface of the latter in the high-field phase.

3.4. CeAl2 and CeIn3

These two materials have much in common. Both of them can be classified as Kondo lattice
systems with moderately heavy-fermion behaviour (γth = 135 mJ K−2 mol−1 in CeAl2 and
130 mJ K−2 mol−1 in CeIn3). For both of them the localized behaviour of Ce magnetic
moments is well established.

CeAl2 orders antiferromagnetically atTN = 3.8 K, and the dHvA measurements are
made atB > Bc = 5.27 T in a high-field phase above the metamagnetic transition
[29, 46]. These measurements demonstrated striking similarity between the Fermi surfaces
in CeAl2 and sister compound LaAl2, although the moderately heavy masses of≈ 15m0

were registered at least for two electron sheets. The mass enhancement seen from dHvA
measurements is systematically lower than theγth enhancement over the corresponding
value of LaAl2 (∼ 20% deficit).

CeIn3 orders antiferromagnetically atTN = 10.2 K and does not undergo the
metamagnetic transition atB < 15 T [47]. As the f electrons in CeIn3 are known to be
well localized, the topology of the Fermi surface is expected to be similar to that of LaIn3,
although some parts of it could be folded into smaller bands in the magnetically ordered
state. This picture is confirmed in general by dHvA experiments [48], but the absence of the
band calculations for antiferromagnetic state makes direct comparison difficult. Moderately
heavy masses (11.2m0 and 20.7m0) are registered, but the share of these masses inγth is
not estimated. Careful investigation of Fermi surface of this system in magnetic state is
highly desirable, since this is the only material among magnetic Kondo lattices where the
dHvA measurements are possible below the metamagnetic transition.

4. Conclusions

Although the de Haas–van Alphen oscillations give direct information about the electron
mass enhancement, the task of separating the pure contribution of spin excitations from
the electron enhancement effects in the low-temperature thermodynamics and magnetic
response of the heavy fermion systems is extremely difficult. The problems arise both in
the theoretical analysis and in the choice of experimental objects.

Three theoretical possibilities for explaining the origin of heavy fermions exist: (i)
enhancement of electron–polaron, paramagnon, etc type foritinerant f electrons with
heavy enough ‘bare’ masses; (ii) many-particle Kondo-resonance renormalization of electron
dispersion law which results in a change of the Fermi volume because of charging of the spin
excitations due to Kondo coupling; (iii) spinon–electron interaction in the state where the
(neutral) f-spin-fermion degrees of freedom are separated from (charged) conduction electron
degrees of freedom. The first possibility can be realized only for a system with essentially
non-integer valence of the f shell, thus ruling out the possibility of explaining the heavy-
fermion behaviour in systems with integer valence of Ce ions. Two other possibilities give
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a real alternative for explaining the HF behaviour of many Ce-based systems. To choose
between these approaches the careful analysis of compensation degree and the thorough
determination of the difference between the diamagnetic and thermodynamic densities of
states is necessary.

Unfortunately, one cannot point out a system where the dHvA measurements allow one
to choose between two latter models. The most thoroughly studied compound CeRu2Si2
seems to behave rather more like the system with itinerant f electrons than that with the
localized f moments at least in moderate external magnetic fields. One should emphasize,
however, that the properties of this system above the metamagnetic transition cannot be
described either by the itinerant band model or by the Kondo-resonance model. Another
interesting object, the CeCu6 compound, has too complicated a band structure to make
definite experimental conclusions. All other heavy-fermion systems where large effective
masses were detected experimentally in dHvA measurements (CeB6, CeAl2, CeIn3) have
magnetic ground states, and the experimental information available was obtained for
the high-field phases. These latter Kondo-lattice systems demonstrate noticeable mass
enhancement without Fermi surface reconstruction in comparison with La-based prototypes.
One can interpret this fact as an indication of absence of resonance scattering effect in the
high-field state and ascribe the mass enhancement to Migdal-type self-energy corrections,
although the nature of the slow quasiparticles responsible for mass enhancement is still a
matter for discussion.
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